commit 913ef3719f791f8c4850aab715e621d4d1569817
parent 9b76439123bacc41647d11d2bc159f0b9082ed4d
Author: Mattias Andrée <maandree@kth.se>
Date: Sun, 1 May 2016 09:58:33 +0200
refsheet: there is no good way to symbolise rounding toward zero, so do not use rounding symbols at all
Signed-off-by: Mattias Andrée <maandree@kth.se>
Diffstat:
1 file changed, 4 insertions(+), 4 deletions(-)
diff --git a/doc/refsheet.tex b/doc/refsheet.tex
@@ -51,8 +51,8 @@ Unless specified otherwise, returns are {\tt void} and all parameters are of typ
\entry{zsub(a, b, c)} {$a \gets b - c$} {}
\entry{zmul(a, b, c)} {$a \gets b \cdot c$} {}
\entry{zmodmul(a, b, c, d)} {$a \gets b \cdot c \mod d$} {$0 \le a < \ab{d}$}
-\entry{zdiv(a, b, c)} {$a \gets [b / c]$} {rounded towards zero}
-\entry{zdivmod(a, b, c, d)} {$a \gets [c / d]$} {rounded towards zero}
+\entry{zdiv(a, b, c)} {$a \gets b / c$} {rounded towards zero}
+\entry{zdivmod(a, b, c, d)} {$a \gets c / d$} {rounded towards zero}
\entry{zdivmod(a, b, c, d)} {$b \gets c \mod d$} {$0 \le b < \ab{d}$}
\entry{zmod(a, b, c)} {$a \gets b \mod c$} {$0 \le a < \ab{c}$}
%\entry{zdiv\_exact(a, b, c)} {$a \gets b / c$} {assumes $c \vert d$}
@@ -99,7 +99,7 @@ Unless specified otherwise, returns are {\tt void} and all parameters are of typ
\entry{zxor(a, b, c)} {$a \gets b \oplus c$} {bitwise}
\entry{znot(a, b, c)} {$a \gets \lnot b$} {bitwise, cut at highest set bit}
\entry{zlsh(a, b, c)} {$a \gets b \cdot 2^c$} {{\tt c} is a \size{}}
-\entry{zrsh(a, b, c)} {$a \gets [b / 2^c]$} {ditto, rounded towards zero}
+\entry{zrsh(a, b, c)} {$a \gets b / 2^c$} {ditto, rounded towards zero}
\entry{ztrunc(a, b, c)} {$a \gets b \mod 2^c$} {ditto, $a$ shares signum with $b$}
\entry{zbits(a)} {Get index of highest set bit} {returns \size{}, 1 if $a = 0$}
\entry{zlsb(a)} {Get index of lowest set bit} {returns \size{}, {\tt SIZE\_MAX} if $a = 0$}
@@ -107,7 +107,7 @@ Unless specified otherwise, returns are {\tt void} and all parameters are of typ
\entry{zbset(a, b, c, 1)} {$a \gets b$, set bit $c$} {{\tt c} is a \size{}}
\entry{zbset(a, b, c, 0)} {$a \gets b$, clear bit $c$} {ditto}
\entry{zbset(a, b, c, -1)} {$a \gets b$, flip bit $c$} {ditto}
-\entry{zsplit(a, b, c, d)} {$a \gets [c / 2^d]$} {{\tt d} is a \size{}, rounded towards zero}
+\entry{zsplit(a, b, c, d)} {$a \gets c / 2^d$} {{\tt d} is a \size{}, rounded towards zero}
\entry{zsplit(a, b, c, d)} {$b \gets c \mod 2^d$} {ditto, $b$ shares signum with $c$}
\\