libzahl

big integer library
git clone git://git.suckless.org/libzahl
Log | Files | Refs | README | LICENSE

commit 913ef3719f791f8c4850aab715e621d4d1569817
parent 9b76439123bacc41647d11d2bc159f0b9082ed4d
Author: Mattias Andrée <maandree@kth.se>
Date:   Sun,  1 May 2016 09:58:33 +0200

refsheet: there is no good way to symbolise rounding toward zero, so do not use rounding symbols at all

Signed-off-by: Mattias Andrée <maandree@kth.se>

Diffstat:
Mdoc/refsheet.tex | 8++++----
1 file changed, 4 insertions(+), 4 deletions(-)

diff --git a/doc/refsheet.tex b/doc/refsheet.tex @@ -51,8 +51,8 @@ Unless specified otherwise, returns are {\tt void} and all parameters are of typ \entry{zsub(a, b, c)} {$a \gets b - c$} {} \entry{zmul(a, b, c)} {$a \gets b \cdot c$} {} \entry{zmodmul(a, b, c, d)} {$a \gets b \cdot c \mod d$} {$0 \le a < \ab{d}$} -\entry{zdiv(a, b, c)} {$a \gets [b / c]$} {rounded towards zero} -\entry{zdivmod(a, b, c, d)} {$a \gets [c / d]$} {rounded towards zero} +\entry{zdiv(a, b, c)} {$a \gets b / c$} {rounded towards zero} +\entry{zdivmod(a, b, c, d)} {$a \gets c / d$} {rounded towards zero} \entry{zdivmod(a, b, c, d)} {$b \gets c \mod d$} {$0 \le b < \ab{d}$} \entry{zmod(a, b, c)} {$a \gets b \mod c$} {$0 \le a < \ab{c}$} %\entry{zdiv\_exact(a, b, c)} {$a \gets b / c$} {assumes $c \vert d$} @@ -99,7 +99,7 @@ Unless specified otherwise, returns are {\tt void} and all parameters are of typ \entry{zxor(a, b, c)} {$a \gets b \oplus c$} {bitwise} \entry{znot(a, b, c)} {$a \gets \lnot b$} {bitwise, cut at highest set bit} \entry{zlsh(a, b, c)} {$a \gets b \cdot 2^c$} {{\tt c} is a \size{}} -\entry{zrsh(a, b, c)} {$a \gets [b / 2^c]$} {ditto, rounded towards zero} +\entry{zrsh(a, b, c)} {$a \gets b / 2^c$} {ditto, rounded towards zero} \entry{ztrunc(a, b, c)} {$a \gets b \mod 2^c$} {ditto, $a$ shares signum with $b$} \entry{zbits(a)} {Get index of highest set bit} {returns \size{}, 1 if $a = 0$} \entry{zlsb(a)} {Get index of lowest set bit} {returns \size{}, {\tt SIZE\_MAX} if $a = 0$} @@ -107,7 +107,7 @@ Unless specified otherwise, returns are {\tt void} and all parameters are of typ \entry{zbset(a, b, c, 1)} {$a \gets b$, set bit $c$} {{\tt c} is a \size{}} \entry{zbset(a, b, c, 0)} {$a \gets b$, clear bit $c$} {ditto} \entry{zbset(a, b, c, -1)} {$a \gets b$, flip bit $c$} {ditto} -\entry{zsplit(a, b, c, d)} {$a \gets [c / 2^d]$} {{\tt d} is a \size{}, rounded towards zero} +\entry{zsplit(a, b, c, d)} {$a \gets c / 2^d$} {{\tt d} is a \size{}, rounded towards zero} \entry{zsplit(a, b, c, d)} {$b \gets c \mod 2^d$} {ditto, $b$ shares signum with $c$} \\